Elektrofahrzeuge sollen mit einer Batterieladung bis zu 700 Kilometer weit fahren, Smartphones deutlich seltener aufgeladen werden. Dafür wird »KaSiLi« stehen, das von Dresden aus unter der Federführung des Fraunhofer Instituts für Werkstoff- und Strahltechnik IWS im Verbund drei Jahre lang an neuen Elektroden-Technologien forschen soll. »Dadurch bahnt sich ein Quantensprung für die Batterietechnik an«, hofft Prof. Christoph Leyens, Institutsleiter des Fraunhofer IWS und Direktor des Instituts für Werkstoffwissenschaft der Technischen Universität Dresden. »Diese disruptive Technologie hat das Potenzial, den Standort Deutschland deutlich voranzubringen«, meint auch Chemie-Professor Stefan Kaskel von der TU Dresden, der in Personalunion das »ExcellBattMat-Zentrum« (kurz: EBZ) am Fraunhofer IWS und das vom BMBF geförderte KaSiLi-Projekt leitet.
Expertise für eine elektromobile Zukunft
In der langen Wertschöpfungskette von der Batteriezelle bis zum fertigen Elektroauto könne die deutsche Wirtschaft so deutlich an Gewicht gewinnen. »Letztlich wollen wir eine moderne Batteriezellen-Produktion in Deutschland etablieren. Dadurch wären wir bei der Wende hin zu Elektromobilität und zu erneuerbaren Energien weniger als bisher von Zulieferungen aus Fernost oder den USA abhängig«, betont Kaskel. Um dies zu erreichen, entwickeln die Dresdner neue Materialien, Designprinzipien und Verarbeitungstechnologien für die Elektroden in den kleinsten Energiespeicher-Einheiten eines Akkumulators, die heute meist als Batteriezellen bezeichnet werden. Wichtige Bauteile in solch einer Zelle sind Anode und Kathode. Zwischen diesen beiden Polen wandern die elektrischen Ladungsträger hin und her, wenn eine Batterie geladen wird oder wenn sie gerade Strom für den Elektromotor in einem E-Auto liefert. Heute besteht die Anode in einer Lithium-Ionen-Batterie meist aus einem wenige Mikrometer (Tausendstel Millimeter) dünnen Kupfer-Stromleiter, der mit einer etwa 100 Mikrometer dicken Grafitschicht bedeckt ist.
Energiedichten von über 1 000 Wattstunden je Liter erreichbar
Diese Graphit-Schicht wollen die Dresdner Chemiker durch weit dünnere Schichten aus Silizium oder Lithium ersetzen. Diese sollen dann nur noch rund zehn bis 20 bis 30 Mikrometer messen. Im Labor funktioniert das auch schon recht gut und sorgt bereits für mehr Energiespeicher-Vermögen. »Heutige Lithium-Ionen-Akkus kommen auf eine Energiedichte von etwa 240 Wattstunden pro Kilogramm bzw. bis 670 Wattstunden pro Liter«, erklärt Stefan Kaskel. »Mit unseren Elektroden wollen wir auf deutlich über 1 000 Wattstunden pro Liter kommen«.
Auf dem Weg dahin müssen die Entwickler allerdings nicht nur die Chemie und die Beschichtungsprozesse für ihre Zellen weiter verbessern, sondern auch ein mechanisches Problem lösen: Unter dem Mikroskop hat sich gezeigt, dass die mit Silizium oder Lithium dünn beschichteten Elektroden immer wieder schrumpfen und sich ausdehnen, wenn die Batterien aufgeladen oder entladen werden – als ob die Zelle atmen würde. Dies ist allerdings ein Problem, da die mechanische Belastung die Elektroden durch diese »Atmung« rasch zerstören kann. Daher experimentieren die Kooperationspartner nun auch mit winzig kleinen Federn. Dafür arbeiten sie an speziellen Schichten für die Kathode: »Durch eine spezielle Anpassung ihrer mikroskopischen Eigenschaften soll diese abfedernde Eigenschaften erhalten und damit ebenfalls wesentlich zu einer höheren Energiedichte der neuen Batteriegeneration beitragen«, so Dr. Kristian Nikolowski vom Fraunhofer-Institut für Keramische Technologen und Systeme IKTS.