Perspektive für Brennstoffzellenfahrzeuge im Serieneinsatz
Gemeinsam mit der Daimler AG, ThyssenKrupp, dem Max-Planck-Institut für Eisenforschung und dem Fraunhofer-Institut für Schicht- und Oberflächentechnik IST Braunschweig erforscht das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden Technologien zur Herstellung hocheffizienter metallischer Bipolarplatten für Brennstoffzellenfahrzeuge. Das im Juni 2012 gestartete Projekt „Metallische bipolare Platten aus beschichteten Hochleistungswerkstoffen - miniBIP“ hat ein Gesamtbudget von 5,15 Mio. € und eine Laufzeit von 42 Monaten.
Wie kann unsere Gesellschaft angesichts von Ressourcenverknappung, Umweltverschmutzung und Klimawandel auch in Zukunft mobil bleiben? Können elektrisch angetriebene Fahrzeuge die Lösung sein? Rein batteriebetriebene Fahrzeuge besitzen derzeit nur eine geringe Reichweite, die Ladezeiten sind vergleichsweise lang. Wasserstoffbetriebene Brennstoffzellenfahrzeuge bieten dagegen schon heute 400 km Reichweite und Tankzeiten, die nur geringfügig höher sind als beim gewohnten Tankstopp.
In der Brennstoffzelle reagieren Wasserstoff und Sauerstoff zu Wasser und erzeugen dabei Strom. Eine saubere Sache. In einem Auto müssen zwischen 50 und 200 Brennstoffzellen zu einem Stack gestapelt werden, um genügend Leistung zu erzeugen. Jede dieser Zellen besitzt zwei Bipolarplatten, die dafür sorgen, dass Wasserstoff und Sauerstoff antransportiert und Wasser, Strom und Abwärme abgeführt werden. Bisher wurden diese Bipolarplatten aus Graphit oder einem graphithaltigen Kunststoff gefertigt. Benutzt man stattdessen Edelstahl, könnte man die Bipolarplatten kleiner, leichter, schneller und zudem billiger fertigen.
Was so einfach klingt ist, in der Praxis mit einer Vielzahl technischer Herausforderungen verbunden. So sorgt die natürliche Passivschicht an der Oberfläche des Edelstahls zwar für seine Korrosionsbeständigkeit, gleichzeitig erzeugt sie aber einen hohen elektrischen Widerstand. Um diesen zu überwinden, müssen mindestens 10 % der Spannung aufgewandt werden, die die Zelle erzeugt. Dadurch sinkt die Effizienz der Zelle. Um also die Vorteile des Edelstahls nutzen zu können, muss seine Oberfläche leitfähiger werden, ohne die Korrosionsbeständigkeit zu beeinträchtigen.
In dem nun gestarteten Forschungsprojekt nutzt das Fraunhofer IWS Dresden seine Kompetenz auf dem Gebiet der Oberflächenmodifikation, um die störende Passivschicht zu entfernen und durch eine mit Stickstoff angereicherte Oberfläche oder durch eine graphitähnliche Kohlenstoffschicht zu ersetzen. So kombiniert man die Vorteile von Edelstahl und Graphit, ohne ihre Nachteile in Kauf zu nehmen. Gemeinsam mit den Projektpartnern werden die unterschiedlichen Lösungen ausgiebig getestet und bewertet. Mit der besten Lösung wird ein im Fahrzeugantrieb einsetzbarer Stack mit 50 Zellen realisiert und im Labor auf Herz und Nieren geprüft. Mit dem erfolgreichen Projektabschluss rückt die elektro-mobile Zukunft einen guten Schritt näher.
Das Projekt wird durch die Bundesrepublik Deutschland unter dem Förderkennzeichen 03ET2045A gefördert. Zuwendungsgeber ist das Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des deutschen Bundestages.