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LAwave – at a glance

LAwave – Our one-of-a-kind measurement technology offers

 Access to surface material properties: Non-destructive, quick with highest accuracy

 For academia: unique research options for material science and solid state physics

 For industry: Easy quantification of surface properties in less than one minute

 Custom solutions for research, quality control, analysis and automation 

 Fully integrated software for measurement and analysis

27.09.20243 © Fraunhofer IWS

Facts and numbers
—
Complies with EN 15042-1:2006
30+ systems world wide
30+ years of experience
70+ peer reviewed contributions
2000+ citations
R&D 100 award
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—
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Components and technologies

Mechanical properties of coated components

 Cylinder liner coatings (APS, wire arc spraying, …)
 Electric heaters (thermal sprayed coatings)
 Brake disk coatings (laser cladding)
 Heavy duty gear parts (cemented carbide coatings) 
 3D-printed metal components (SLM)
 Piston pins, tappets, chain components (PVD)
 And many more….

For R&D and quality control

 Effective Modulus (Pores, cracks, voids, delamination)
 Thickness
 Homogeneity 
 Fast and effective – high throughput screening

© BMW
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Highlights

Basics

 LAwave® - Laser-induced surface acoustic waves spectroscopy

 Can access mechanical properties of coatings and surfaces

 Integral and effective mechanical information 

 including pores, cracks and delamination

 Numerous applications for industrial quality control and R&D 

Advantages over indentation

 Faster measurement, no calibration, less consumables 

 Higher precision, more and integral information

 Measures on rough surfaces

 True effective modulus: no plastic deformation, no compression of cracks, 
pores and defects

non-destructive

fast
(< 60 s)

fully 
automatable

Freepik, CC BY 3.0

www.Pixabay.com Free Licence

John Caserta, CC BY 3.0
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How it works - Overview

(1) Broadband surface acoustic 
waves (SAW) induced by short 
laser pulses 

(2) SAW propagation, velocity 
depends on frequency

(3) SAW measurement: piezoelectric 
element  digitizing oscilloscope
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(4) Fourier transformation 
yields velocity over 
frequency (dispersion 
curve) 

(5) Dispersion curve 
analysis using different 
evaluation strategies
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isotropic: E, ν, ρ
    

film 1: E1, ν1, ρ1, d1
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Method
—
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Method Overview

(1) Surface acoustic wave (SAW) 
generation

(2) SAW propagation through 
measured material volume

(3) SAW measurement by 
piezoelectric element
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(4) Calculation phase 
velocity over frequency 
(dispersion curve)

(5) Different analysis 
strategies
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Surface wave excitation and measurement

1

1

2

3

2

3

fc=λ

)( fcc =

Coating or
surface layer

Substrate

SAW excitation

 Broadband surface acoustic waves (SAW) induced by short laser 
pulses 

SAW propagation

 Penetration depth of SAW ≈ wavelength

 SAW velocity c depends on frequency f

SAW detection 

 Mechanical vibrations  electrical signals
 Wedge type sensor with piezoelectric foil for 20-250 MHz
 Conventional ultra sound sensor for 1-20 MHz
 Oscilloscope measures impulse run-time

27.09.202411 © Fraunhofer IWS



Public

V4.6

Sensors

27.09.202413 © Fraunhofer IWS

Low frequency

 1-20 MHz, 20-500 µm thickness

 Thermal spray, laser cladding, surface hardening

High frequency

 20-250+ MHz, ~ nanometers to 20 µm

 PVD, CVD
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Evaluation of Measurement
Measuring procedure and data analysis

 Variation of propagation distance x

 FT of the detected signals 

 Phase spectra Φ(f) for different distances and phase velocity c(f)

= dispersion curve

 Shape of the dispersion curve c(f) depends on elasticity, density and film 
thickness

Approaches to get film properties 

 Fitting measured curve to theory, using a material model 

 Calibration with another method

 Defining ok/not ok boundaries from known samples

 Using  regression fitting and KI with know samples

4

4

5

Ph
as

e 
ve

lo
cit

y 
c

Frequency f
)()(

2)()(
12

12

ff
fxxfc

Φ−Φ
−

=
π

5

0 50 100 150 200 250 300

4750

5000

5250

5500

5750

hard-coating: diamond like carbon  

Soft film: low-k dielectric film  

Non-coated substrate: (100) silicon 

 measured
 fitted

Su
rfa

ce
 w

av
e 

ve
lo

cit
y 

c 
/ m

 s-1

Frequency f / MHz

27.09.202414 © Fraunhofer IWS



Public

V4.6

Dispersion Curve – Influence of Material System

27.09.202415 © Fraunhofer IWS
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Dispersion Curve Analysis – Multilayer Material Model

substrate

isotropic: E, ν, ρ
cubic: C11, C12, C44 , ρ

film 1: E1, ν1, ρ1, d1

film 2: E2, ν2, ρ2, d2

film 3: E3, ν3, ρ3, d3

film 4: E4, ν4, ρ4, d4

film 5: E5, ν5, ρ5, d5

Theory of Thomson and Haskell

 Exact solution for dispersion 
curve of a stack of layers

Haskell; Bull. of the Seism. Soc. of America 43,  1953.
Thomson; Journal of Applied Physics 21, 1950

Multilayer Model by Haskell and Thomson

 Is able to model SAW propagation for any 
multilayer stack consisting of homogeneous 
layers

 1 to 3 material parameters can be obtained 
from fitting data to model

 Number of material parameters that can be 
fitted depend on curvature of dispersion 
curve

 Other parameters can be derived from data 
bases, independent measurement or 
assumption

27.09.202416
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Dispersion Curve Analysis – Number of independent parameters

27.09.202417 © Fraunhofer IWS

Material

 Coating: ta-C = superhard amorphous carbon

 Substrate: Si wafer

Film parameters that can be measured

 Young‘s modulus E

 Density ρ

 Film thickness d

More coating parameters can be fitted for

 High differences of coating and substrate

 High frequency range
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Development and 
Background
—
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History of System Development

27.09.202419 © Fraunhofer IWS

From 2016

Starting 2024 
New generation industry system

2000s

1989
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Current Developments

27.09.202420 © Fraunhofer IWS

Scaling concept for LAwave system 
technology

From left to right

 Fully manual operated R&D tool

 Half-automated quality control system

 Quality control system for large 
components

 Fully automated quality control tool

Development topics

 Quality control suitability: automated measurement and evaluation functionality

 Mobile head for robot or hand for measurement on large parts

 Measurement at elevated temperature 

 Integration for customer-specific applications
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Technology Readiness

27.09.202421 © Fraunhofer IWS

State of the art

 Standalone system, manual handling, quality control 
concepts - TRL 9

 30+ systems world wide

Current development

 Automated measurement and evaluation – TRL 4

 In-situ measurement up to 600 °C – TRL 4

 Mobile head for robot or hand for measurement on large 
parts – TRL 4 (public funded project 2023-2026)

 Integration for customer-specific applications
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Case Studies
—
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Application - Overview

27.09.202424 © Fraunhofer IWS

Young’s modulus, thickness, density of

 All kinds of coatings: PVD, CVD, spin coating, thermal-spraying, cladding, electroplating, …  

 E.g. amorphous carbon coatings (DLC), nitrides, carbides, oxides, other ceramics

 Metal films

 Low-k films

 Polymeric sensor films

 Bulk materials, e.g. steel, brass, cemented carbide

 Si, GaAs semiconductors

Depth of

 Subsurface damage from silicon wafer processing

 Surface hardening zones e.g. after metal finishing
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Case study:  Very thin films < 10 nm

27.09.202425 © Fraunhofer IWS

Material

 PVD coatings with thickness < 10 nm

Results

 Measurement of Young’s Modulus

 HfO2 220.4 GPa

 Native SiO2 39.8 GPa

 SiOx 41.7 GPa

 a-C 373.4 GPa

 TiAlN 142.8 GPa 

 Silicon wafer 165.2 GPa (C11)

 Silicon wafer (high doping) 162.9 GPa (C11) 

 Measurement of thickness of Si/Al/Al2O3 multilayer stack

 Thermal Al2O3 3.9 nm

 Possibilities beyond nanoindentation
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Case study: Subsurface damage in semiconductor wafers

Material

 Semi-conductor surfaces, damaged from processing

Results

 Damage layer  dispersion

 Slope = damage layer depth  allows quantification
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Case study: Quality control of superhard carbon coatings

Material

 Superhard amorphous carbon coatings (ta-C, H-
free DLC), hardness 40..70 GPa

 Application: Low-wear low-friction coating, e.g. 
piston pins in ICE, motorcycle chain

 State-of-the art: Nanoindentation  slow and 
error-prone technique with high indenter wear

Results

 LAwave allows to access

 Coating modulus, coating hardness 

 Coating thickness

in less than 60 seconds

© BMW
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Case study: Quality control of superhard carbon coatings III

27.09.202429 © Fraunhofer IWS
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Case study: Lateral cracks in SHVOF coatings

Lateral cracks
E = 46 GPa

Dense structure
E = 101 GPa

Material

 Al2O3 SHVOF sprayed

 Thickness around 400 µm

 Coating structure: homogenous, 
risk of lateral cracks

Results

 Measurement of elastic modulus 

 Elastic modulus decreases due to 
lateral cracks

 Non-destructive measurement 
of critical defects

27.09.202430 © Fraunhofer IWS
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Case study: Development of novel brake disk coatings
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Material

 Multilayer coatings from high speed laser cladding, carbides 
in Fe-based matrix

 Application: Novel brake disk coatings for high performance 
and e-mobility

 State-of-the-art: Cross section + SEM imaging  time 
consuming (~ hours… days), expensive, big infrastructure

Results

 LAwave measures mechanical key features

 Front and back, ⊥ and || to deposition direction, anywhere on 
the disk

 Non-destructive (disk can be measured before and after test 
bench) 

 six representative spots measured in less than 30 minutes
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Case study: Defects in APS-Al2O3

Material

 Spray technologies: APS (or HVOF, …)

 Al2O3 (or Cr2O3, TiO2, …)

 Thickness 100 to 600 µm

 High roughness Ra > 1 µm

 Coating structure: micro-cracks and porosity

Results

 LAwave measurement gives coating thickness and 
effective elastic modulus E

 Effective elastic modulus varies due to different crack 
and pore density

 Quality and mechanical behavior of coating can be 
measured non-destructively

L.-M. Berger et. al.: VIP-Journal Vol. 24, 2012
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Case study: Pores in metal films (1/2)

Material

 2 µm Titanium coating on Si wafer

 PVD: Electron beam evaporator + additional plasma activation

Results

 Effective Young’s Modulus is measure of porostiy

 No activation  porous films (E = 68 GPa) 

 High activation  dense films (E = 113 GPa)

M. Leonhardt et. al.: Surface and Coatings Technology 2004
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Example: Pores in metal films (2/2)

34

Series 1
E = 68 GPa

Series 2
E = 85 GPa

Series 3
E = 105 GPa

Series 4
E = 113 GPa

(Compact Ti: E = 116 GPa)

 Effective Young’s Modulus strongly correlates with porosity observed in SEM cross section

M. Leonhardt et. al., Surface and Coatings Technology 185 (2004) 292

27.09.202434 © Fraunhofer IWS
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Case study: Polymeric sensor films

Material

 Polyimide films on silicon wafer for humidity sensors

 Film thickness 500 to 600 nm

 B+ ion implantation to improve sensor properties

Results

 Young‘s modulus E and Density ρ were obtained from 
the measurement

 Density and Young‘s modulus increase with B+ dose

 Distinct effect for a B+ dose > 1015 B+/cm2

 Young‘s modulus  increased by approx. 700 % 
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Example: Porous low-k films

Material

 Nano-porous SiCOH low-k films 

 High porosity: > 40 %

 Rel. permittivity k < 2.5

 Minimum required stiffness E > 5 GPa

Results

 Young’s modulus and density can be measured

 Higher reliability than results from nanoindentation

36

Prager et al. Microelectronic Engineering 85 (2008) 2094–2097

Irradiation with 172 nm and 222 nm photons, ρ = 1.2 
gcm-3 and d = 200 nm

27.09.2024 © Fraunhofer IWS
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Case study: Delaminations

1st step: simple 1-layer model

 Measured Young’s modulus smaller 
than expected (E = 50 GPa)

 Measurement and model do not fit

37

200 µm

Thermal sprayed Cr2O3 coating

Steel substrate
Crack at the interface

Layer 2: E2 = 52 GPa, t2 = 290 µm

calculated

Steel substrate

Layer 1: E1 = 4 GPa, t1 = 10 µm

Layer1: 

E1 = 23 GPa, t1 = 300 µm

Steel substrate

3rd step: 2-layer model

 2-layer model fits expectation 
when weak interface is assumed

2nd step: cross section preparation

 Delamination revealed at interface

27.09.2024 © Fraunhofer IWS
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Case study: Laser cladding, laser buildup welding

Material

 Coatings from Laser Cladding on steel, 
thickness: 0,5 … 2 mm

 Bulk samples from Laser Buildup 
Welding

 e.g. Inconel 625, 316 L

 High roughness Ra > 1 µm

Results

 Young’s Modulus from measurement

 Influence of buildup direction (⊥ or || to 
cladding lines)

 Microstructure: Influence of cracks and 
porosity

38 27.09.202438 © Fraunhofer IWS
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Case study: Parts generated from Selective Laser Melting (SLM)

Material

 Parts generated by selective laser melting

 Material: e.g. AlSi40, Ti6Al4V, …

Results

 Young’s modulus

 Influence of buildup direction (⊥ or || to 
built up lines) 

 Microstructure: Influence of cracks and 
porosity
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Case study: Hardening depth

Material: Surface hardened metal (case hardening, laser hardening, nitrogen hardening, …) 

Results: Hardening depth, surface hardness

40

D. Schneider et al, Surface and Coatings Tech., 206, p. 2079-2088, 2012 D. Schneider et al, Surface and Coatings Tech., 206, p. 2079-2088, 2012

27.09.202440 © Fraunhofer IWS
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Case study: Nitriding depth

41
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Material

 Steel 1.2343

 Nitrided with different nitride hardening depths 
(= NHT)

Results

 Strong correlation between hardness profile 
and dispersion curves

 Dispersion curves hold information about NHT, 
surface and core hardness, and more

27.09.202441 © Fraunhofer IWS

H
ar

d
n

es
s

H
V

0.
00

5

Edge Distance / µm
Source: Fraunhofer IST



Public

V4.6

Methodical Aspects
—

27.09.202442 © Fraunhofer IWS



Public

V4.6

Measurement on native rough surfaces
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Material

 Various hard PVD and thermal spray coatings

 Surfaces both as-deposited and smoothed

Results

 Measurement on both surfaces conditions possible

 Young’s Modulus does not change

 Condition: Roughness (Ra 0,02 - 6,5 µm) << wave 
length (ca. 50 µm @ 60 MHz)

 Measurement on native rough surfaces as reliable 
as on smooth surfaces
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Influence of sample curvature

Measurement in axial direction

 No limitations from curvature

 Signal/noise ratio smaller

Measurement in radial direction

 Additional dispersion from curvature at low frequencies 

 Correction of the influence of curvature mathematically possible

 No general limitations from sample curvature

 Practical limitations for complex 3D structures
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Comparison with instrumented indentation testing

Coating Materials

 TiN, TiCN, CrN (magnetron 
sputtering) 

 ta-C (LaserArc)

 Film thickness: d >1 µm

Result

 Excellent agreement of Young’s 
Modulus from both methods for 
solid, non-porous bulk materials

45

Schneider, Schultrich et al.: Thin Solid Films 1998 Zawischa, Lorenz; Fraunhofer IWS 2017

160 200 240 280 320 360
160

180

200

220

240

260

280

300

320

340

1:1

 

 TiN
 TiCN
 CrN

Yo
un

g'
s 

m
od

ul
us

 (L
Aw

av
e)

 / 
GP

a

Young's modulus (Indentation) / GPa
300 400 500 600 700 800

300

400

500

600

700

800

 ta-C

1:1

Y
ou

ng
's

 m
od

ul
us

 (L
A

w
av

e)
 / 

G
P

a

Young's modulus (Indentation) / GPa

27.09.2024 © Fraunhofer IWS



Public

V4.6

Comparison with instrumented indentation testing
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This example: EIndenter ≈ 2⋅ELAwave

Indentation
Densification of microdefects
 Distorted results

Surface acoustic waves
Reversible deformation
 True elasticity
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Coating Materials

 Porous low-k films

Result

 Effective modulus is strongly overestimated with indentation 
due to compressed pores
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Comparison with instrumented indentation testing (nanoindentation)
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LAwave Nanoindentation

Method Dynamic: Sound velocity  c ~ √(E/ρ) Quasi-static:  Er ~ dP/dh

Measuring area > 5 x 5 mm² (integral method) < 10 µm² (local method)

Measuring time One minute ~ 1 hour (including sample 
preparation and calibration)

Minimal film thickness A few nanometers ≈ 100 nanometers

Surface roughness No requirements Smooth surface necessary

Difficult material systems Transparent and high damping 
materials

Soft and superhard materials, very 
thin coatings

 LAwave method has superior benefits over nanoindentation for many application scenarios
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Limits
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Method will not work

 If surface (coating or substrate) does not absorb laser light  no wave generated

 Substrate is too thin  plate waves instead surface waves

 Damping is too high  polymers, very high roughness, very high crack density

Challenging

 On curved surfaces

 On very small areas

 Complex coating architectures, gradient (limited quantification)



Public

V4.6

LAwave around the world

Headquarter

Fraunhofer Institute for Material and Beam Technology IWS

Winterbergstrasse 28, 01277 Dresden, Germany

Martin Zawischa

+49 351 83391 3096

martin.zawischa@iws.fraunhofer.de

lawave@iws.fraunhofer.de
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